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Surface waves in a nearly square container subjected to vertical oscillations are 
studied. The theoretical results are based on the analysis of a derived set of normal 
form equations, which represent perturbations of systems with 1 : 1 internal resonance 
and with D, symmetry. Bifurcation analysis of these equations shows that the 
system is capable of periodic and quasi-periodic standing as well as travelling waves. 
The analysis also identifies parameter values a t  which chaotic behaviour is to be 
expected. The theoretical results are verified with the aid of some experiments. 

1. Introduction 
This work is on nonlinear surface waves in a container subjected to vertical 

periodic oscillations. The earliest work on this subject is by Faraday (1831), and more 
recent work starts with Benjamin & Ursell (1954). In the last few years, there has 
been renewed interest in the study of weakly nonlinear phenomena associated with 
surface waves. The most interesting phenomena, including chaotic behaviour, are 
due to internal resonance which occurs when the ratios of natural frequencies of two 
or more modes of motion are near some small positive integers. Miles (1984a, b)  has 
studied such wave phenomena when two modal frequencies are nearly equal, in the 
case of circular containers, in the unexcited and horizontally excited cases 
respectively. He has also studied the case of vertical excitations when the modal 
frequencies are in the ratio of 1 : 2 (Miles 1984~) .  This problem has also been studied 
by Gu & Sethna (1987) and by Holmes (1986). 

The case when two modal frequencies are nearly equal, the excitation is vertical 
and the container is circular, or nearly square, has special fascination owing to the 
inherent symmetry of the problem. For a circular container, Ciliberto & Gollub 
(1984) have given some experimental results, and Meron & Procaccia (1986a, b )  have 
derived amplitude equations, based on symmetry considerations, to provide a 
theoretical basis for the experimental results. The free oscillations in a nearly square 
container, when the frequencies are nearly equal, is discussed by Bridges (1987). This 
study is limited to the study of standing waves. 

Our study is motivated by work of Gu & Sethna (1987). In that work, periodic, 
almost periodic and chaotic wave motions are studied in the case of a rectangular 
container subjected to vertical sinusoidal motions when the frequencies of two modes 
are in the ratio of 1 : 2. The requirement of this frequency ratio, however, makes the 
fluid height relatively small, which causes excessive energy dissipation which, in 
turn, suppresses nonlinear phenomena. It is, therefore, not possible to verify the 
results experimentally. In  the case of a nearly square container, on the other hand, 
all the non-symmetric modes have nearly equal natural frequencies independent of 
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the fluid depth. Thus, this case is amenable to both a theoretical and an experimental 
investigation, which is the subject of this work. 

Specifically, we derive the normal form equations from the basic equations of fluid 
motions and thus give explicit formulae for all the parameters in the normal form 
equations in terms of the physical parameters. We then present a complete 
bifurcation analysis of the motion and show that the system is capable of periodic 
standing waves in the form of mixed modes, travelling waves with steady rotations 
around 'nodal points' of the two linear modes, almost periodic motions in the latter 
two kinds of waves, and we locate parameter values a t  which chaotic phenomena are 
expected to occur. Furthermore, we present results from experiments that verify, 
with different degrees of accuracy, all the above phenomena. 

The discussion given here does not include global bifurcation analysis leading to 
chaotic phenomena as discussed by Gu & Sethna (1987) and by Holmes (1986) in 
order to keep the presentation to a reasonable length. A study of such bifurcations, 
combining the approaches in the above two references, is in progress. 

As mentioned earlier, symmetry plays an important role in the analysis. The 
fourth-order normal form equations, as is well known, represent an equivalence class 
of dynamical systems depending on the parameter values. They represent normal 
form equations of very general perturbed Hamiltonian dynamical systems with 
one-one resonance and with D, symmetry. The perturbations are such that the 
perturbed system still retains Z,@Z, symmetry. It can be shown that the case 
discussed here is one of 24 distinct cases of such systems. The works of Verhulst 
(1978), Swift (1988) and the fundamental works of Golubitsky & Stewart (1985, 1986) 
are relevant references on this subject. 

Finally, we mention the work of Simonelli & Gollub (1989) that  we have received 
in a private communication. I n  their work, which is primarily experimental, they 
study the same problems discussed here. To the best of our knowledge, none of their 
conclusions contradict the theoretical or experimental results given here. Their 
experimental work is done with much more sophisticated techniques and is much 
more complete than what is given here. 

2. Problem formulation and normal form equations 
We follow here closely the discussion in Gu & Sethna (1987). Consider a rigid 

rectangular container filled with an inviscid incompressible fluid subjected to vertical 
motions F cos vt with respect to  a fixed reference frame. We assume that the flow is 
irrotational and, thus, there exists a potential function $(x, t ) ,  where x is the position 
with respect to the container, so that Qqi = V, where V is the fluid velocity relative 
to the container. Furthermore, owing to the assumptions of incompressibility and 
irrotationally, 4 satisfies Laplace's equation. The origin of a moving Cartesian 
reference frame is attached to the container at the undisturbed free surface of the 
fluid. The cross-section of the container is rectangular of sides a and b and the fluid 
depth is H .  Let the free surface be denoted by x = ~ ( x ,  y, t ) .  If 

x = a2. y = by", x = az", 
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where g is the acceleration of gravity, then dropping tilde signs, we have 

q5xz+h~q5~y+q5zz = 0 for 0 < x < 1, 0 < y < 1, - A  < z < ~ ( z ,  y,t). (2.1) 

q5,=0 on x = O , l ;  $ y = O  on y = 0 , 1 ;  # , = O  on z=--h,  (2.2) 

wq5t +t(q5i + A; q5; + $75:) + (1 - f cos 2t) 'I = 0, (2.3) 

w'It+~,'Iz+~;q5y'IY--q5z = 0, (2.4) 

The boundary conditions are 

and on the boundary z = ~ ( x ,  y, t )  

and, from the incompressibility of the fluid, we have 

Let e be a small parameter and let the dimensionless forcing amplitude f = eA and 
q5 and 7 be of O(&). We obtain a restricted class of asymptotic solutions of system 
(2.1)-(2.5) in the limit as E tends to zero. A variety of equivalent procedures are 
available for such analysis; see for instance Gu & Sethna (1987), Bridges (1987) and 
Kit, Shemer & Miloh (1987). Our analysis is closely related to the last two references. 
Our solution becomes a two-mode solution of the linearized version of (2.1)-(2.5) 
when e = 0. 

Our discussion is limited to the case of a rectangular container which is almost 
square in cross-section. We therefore take A, = 1 +O(e). I f f=  0 and if we drop all 
nonlinear terms in (2.1)-(2.5), the solution can be shown to be 

00 

q5 = C +(d5k ei%t/w + d 5k * e-'%t/w @ j k ( X ,  Y? '1, (2.6) 
5 ,  f - 0  

where 

coshKjk(h + z )  

coshK,, h 
g 5 k ( z )  = , Sjk(x, y) = cosjnxcoskny. 

The d are arbitrary constants and di*, their complex conjugates. 
Our interest is in motions when the system is excited sinusoidally in the vertical 

direction. It is well known that under such excitations the linear modes with 
frequencies that are nearest to half of the excitation frequency get strongly excited. 
Since the container is nearly square, if the mode with mode number (m,n )  gets 
excited then the mode with mode number (n,m) will get excited also. Thus for 
m =k n, two modes get excited simultaneously in this manner. Furthermore, owing to 
presence of nonlinear terms the modal amplitudes will have time evolution in a slow 
time T = et. We therefore assume that the problem for e =t= 0 has a solution of the 
form 

f k. 

1 
q51(x, Y , Z ,  t , 7 )  = -gma(z) { [ z , ( ~ ) f l m n ( x ,  ~ ) + Z z ( ~ ) f l n m ( x ,  Y)I@ 

2omn 
+[~T(T)S~,(~,Y)+Z~*(~)S~~(Z,Y)I~-~~}, (2.8) 

where z1(7) and Z2(7) are the two complex amplitudes, Z:(T) and Z:(T) are their 
complex conjugates and they are determined by the terms neglected in the above 
analysis. 

Let w = W m n + U O E ,  A, = l+b€, 7 = &t, (2.9) 

andlet  ?j(x,y,t,T,c) = € - r l ( " , y , t , ~ ) + ~ r 2 ( 2 , ~ , t , ~ ) + e / 3 ( x , y , t , 7 ) +  .... (2.10) 
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The function 9 depends on the space variables, the time t ,  the slow time r and G. We 
shall see that the expansion of q5 in a series analogous to (2.10), results in $2 having 
a term that is a constant times t. This is not a source of any difficulty since the 
problem can be thought of as defined on a bounded set in the space variables and a 
bounded interval in t ,  since all solutions are periodic in t with a period 27t and defined 
for all values of the slow time r.  Alternatively, we note that only the derivative of 
q5 with respect to the space variable and with respect to t appears in (2 .1) - (2 .5)  and 
thus the above-mentioned term in t disappears. Thus one can assume expansion of 
these derivatives in terms of a power series in ef without the occurrence of a linear 
term in t .  For simplicity, we take the former view and regard t to be a bounded 
interval. 

Let #(x, y, z , t , r , e )  = &(z,y,z, t , r )+q~5~(5,  y , ~ , t , r ) + € ~ q 5 ~ ( 5 , y , z , t , r ) +  ..., (2.11) 

with 0 d x < 1,0 < y d 1 ,  - A  d z < 7 , O  < t < 27t, --a0 < r < +m. We note that 

= 

Substituting (2.9)-(2.11) into (2.1)-(2.5) and equating coefficients of powers of €4, 
we have a sequence of boundary-value problems in terms of qr and q5*. The procedure 
for solving these problems is, by now, standard and will not be given here. We merely 
remark that in the solution for 9z there will be spatial modes with mode numbers 
( 2 m , 0 ) ,  ( 0 , 2 m ) ,  (2n,O),  ( 0 , 2 n ) ,  ( m - n , m + n ) ,  ( m + n , m - n ) ,  ( m + n , m + n ) ,  ( m - n ,  
m - n ) ,  (2m, 2n), (2n, 2m). It can be shown that the natural frequencies of these modes 
are not close to wm, and thus g52 can be solved uniquely. With regard to q53, it  is not 
necessary to solve for it explicitly. For q53 to be bounded we apply the Fredholm 
Alternative (see Kit et al. 1987 and Bridges 1987) as the solvability conditions to 
obtain equations for the complex amplitudes 2, and Z,, as follows : 

where 

and where nl, n2 and n3, when neither m nor n is zero, take the form 

24( 1 + r4)  + 9 
m1 = -@'"{A[ - tanhe (( 1 + r2)i  h) ( 1  + r2)2 [tanh4 (( 1 + ra)4h)] 

5 
tanh2 (( 1 + 9); h) 

- 

1 (3[(  1 + rZ)i tanh (( 1 + r2)i h)I2 - 3 + r2) ,  + 
32[ (1  +r2)ttanh((1+r2);h)l3 tanh (2h)-2[(1 +r2)itanh ( (1  +r2)ah)] 

(2.13) 

(3[(  1 + r2)itanh ( ( 1  +r2)ih)I2-3r2 + 1)2 
r tanh (2rh) - 2 [ (  1 + r2)f tanh (( 1 + r2); h ) ]  

+ ( 2 . 1 4 ~ )  
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2 2(1 +r4) 

tanh4 (( 1 + r2)ih)  - (1  + r2)2  (tanh4 (( 1 + rz ) ih) )  

1 
16(( 1 + r2)i tanh (( 1 + ~ ~ ) f h ) ) ~  

+ lo] + 4 
tanh2 (( 1 + r2)i  h)  

(3[( 1 + r2)i tanh (( 1 + r2);h)l2 - 1 -r2 -4r) ,  

[ 4 2  (1 + r )  tanh ( 4 2  (1 + T )  h)  -4((1+ r2)itanh ((1 + r2) ih) )  

(3[( 1 + r2)i tanh (( 1 + r2)i h)I2 - 1 -r2 + 4r), 
4 2  (1 - r )  tanh ( 4 2  (1 - r )  h)-4((1+ rz)itanh ((1 + r2)fh)) 

- 

+ 

1 
8( (1  + r2)i  tanh (( 1 + r2)ih))3 

+ 

(3[( 1 + r2)i tanh (( 1 + r2);h)l2 - 1 -r2)2 

4 2  (1 + r2)i tanh ( 4 2  (1  + r2)fh)-4(( 1 + r2)i tanh (( 1 + r2)4h)) 
X 

7r3 = +{" 1 (1 +r4) 

16 tanh4 ((1 +r2) ih ) - (1  + r2 ) ,  (tanh4 ( ( 1  + r2)$h))  

+ 1 1 3  

2 
tanh2 (( 1 + r2)1 h)  

+ (2 .14~)  

where r = n/m and h = mnh. We note that the above formulae are not valid for two- 
dimensional motions, i.e. when n = 0 or m = 0 (see Verma & Keller 1962). When 
n = 0, they take values 

( 2 . 1 5 ~ )  3 3 
16 

1 (3 tanh2 (h)  -1)2  (i 2 tanh2 (h)+2 tanh3 (h)  ( 4 2  tanh 42h-4tanh (h) )  
7r2=--wk0 -- 

1 

Letting Z ,  = rleisl and Z ,  = r2eie2, 

7'-, 2.i: = (+A)fa,, r2 = (+A)$U,, 
A 

we have the basic equations in normal form 

(2.154 

u, = (-d+sin 20,) a, -n3 a, a; sin (26,-28,), 

o1 = - ( ~ p )  + cos 28, + n, a; +7r2 a; + T 3  a; cos (20, -20,), 

(2.16 a )  

(2.16b) 
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a, = ( -d+ sin 28,) a2 -n3 a2 u: sin (28, - 28,), 

6, = - (r+p) + cos 20, +nl a: +n, a; +n3 a: cos (20, -20,), 

( 2 . 1 6 ~ )  

(2.16d) 

where a, + 0, a, =t= 0 and where the dot stands for differentiation with respect to ?. 
Here following Miles ( 1 9 8 4 ~ )  and Gu & Sethna (1987), we introduce the damping 
term d = 2d,, /A, where d,, can be calculated from the formulas given in Miles 
(1967). 

All our results are based on equations (2.16). These equations depend on six 
parameters : r, p, d ,  nl, n2 and m3. Of these parameters n,, n, and n3 depend on mode 
numbers, their ratio r and the depth parameter h = mnh. The normal form equations 
(2.16) actually represent an entire equivalence class of dynamical systems (see Swift 
1988). We now restrict (2.16) by restricting n,, n, and n3 to values that represent 
surface waves in a fluid. Explicit calculations show that for n + 0 and h > 1 and 
r > 0.13, the following inequalities hold : 

n1 < 0, m3 < 0, rl+n,+n3 < 0, n1-n2-n3 > 0, n , + 7 ~ ~ - ~ ~  > 0, (2.17) 

and these inequalities hold independently of the specific mode numbers themselves. 
The restrictions h > 1 and r > 0.13 are justifiable and, in fact, necessary. When 

0 < h < 1,  the fluid depth is small with the result that the dissipative effects are 
strong; and, when these effects are strong, they tend to suppress nonlinear 
phenomena. When 0 < r < 0.13, we have fairly large mode numbers and it can be 
shown that when the mode numbers are large, the values of the natural frequencies 
of several modes are close to each other. The result is that the phenomena predicted 
by the two-mode analysis given here will occur for extremely small intervals of the 
parameter r and thus the analysis is not very useful. The case when n = 0, i.e. when 
r = 0, a t  first sight appears to be a case that we have eliminated in the above 
discussion. As discussed earlier the values of mj as given in (2.14) when r+O are, 
however, not the same values as those given in (2.15). Again, when h > 1 we find the 
values of the 7~ as given in (2.15) satisfy (2.17). We thus need to study only one case 
with the n satisfying (2.17). In  addition to the combination of the n as given in (2.28), 
we give, for reference, the following ratios of the n that occur frequently in the 

(2.18) 
subsequent analysis : --n,-nn,+n3 n1 + n2 +n3 

p =  7f1-n2+n3 ’ = -n1+n,+n3’ 

a n d w e n o t e t h a t O < p < l  a n d q > l .  

3. Bifurcation analysis 
We now discuss the solutions of (2.16) and interpret them in terms of surface waves. 

Constant solutions of (2.16) represent periodic waves a t  approximately the linear 
modal frequency. There are values of system parameters when there are no waves, 
i.e. a, = a, = 0, or when there are waves in a single mode, i.e. either a, or u2 is zero, 
or when there are waves in a mixed mode, when neither a, nor a2 is zero. We shall 
see that the mixed-mode solutions are of more than one type, generating physically 
different phenomena. 

Period solutions of (2.16) represent modal motions occurring at approximately the 
linear modal frequency with amplitude modulations a t  a frequency that is on a slow 
timescale. The waves thus generated are quasi-periodic waves. We shall show that 
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such wave motions occur only when the motion is with mixed modes and we shall also 
show that there are two types of such mixed-mode motions. The amplitude- 
modulated motions often lead to chaotic behaviour. 

The system (2.16) has a total of six parameters : d,  u, p, nl, nz and n,. For a given 
fluid height, mode numbers and basic dimensions of the container, nl, n2 and n, are 
constants and satisfy (2.17). For given fluid-container dimensions and forcing 
amplitude, d is a constant. We perform our bifurcation analysis in terms of u and p. 
For fixed mode numbers, the parameter u is proportional to the difference of 
detuning of the external excitation frequency and the deviation of aspect ratio from 
one, and inversely proportional to the excitation amplitude, while p is proportional 
to the deviation of the aspect ratios of the container cross-section from one, and 
inversely proportional to the excitation amplitude. Since the deviation of the aspect 
ratio also represents the detuning between the modal frequencies, p can also be 
interpreted as a detuning parameter for ‘internal resonance’ of the system. 

The above-mentioned large variety of physical phenomena occur as the parameters 
u and /3 are varied and the transition from one phenomenon to another occurs at a 
bifurcation. The vast majority of the bifurcations are local and codimension one. 
There are, however, four combinations of u and p where local bifurcations of more 
than one codimension occur. We first discuss the codimension-one bifurcations. 

The basic equations in normal form are (2.16). These equations are not valid when 
a, or a, or both are zero. We, therefore, write them in the Cartesian form. Let 

x, = a, cos 01, y, = a, sin el, x, = a, cos t?,, y, = a, sin 0,. (3.1) 
Then 

h, = -k + (1 + C-P) Y1 -Yl[nl(x: +Y4)  + .,(f +Y;)l- 2n3xl Z2 Y 2  +n, Y l ( 4  -Y% 

81 = ~ ~ - ~ + + ~ ~ l - ~ Y l + ~ l ~ ~ l ~ ~ ~ + Y ~ ~ + ~ z ~ ~ 2 , + Y 2 , ~ l + ~ 3 ~ l ~ ~ 2 , - ~ ; ~ + ~ ~ 3 Y , ~ , ~ , ~  

2 2  = -dx, + (1 + C+P) Y2 - Y a b 1 ( 4  + Y3 +n*(“; +Y;)l-2n3 x152 Y1+ 773 Yz(”; -Y% 

( 3 . 2 ~ )  

(3.2b) 

( 3 . 2 ~ )  

We note the following symmetries of system (3.2): 
(i) D, symmetry when p = 0, i.e. if (xl(t),yl(t),xz(t),y2(t)) is a solution, then 

(Xl( t ) ,  Y l ( t ) ,  -%(t ) ,  -y,(t))t (-xl(t), -Yl(t), x,(% YZ(t)), ( - -Xl( t ) ,  -Y l ( t ) ,  -xz(t), -yz(t)) 

( - - % ( t L  -Yl(t)>~,(t),y,(t)), (xl(t)>Yl(t), -sz(t), -Yz(t))  and (-%@), -Y1(% -x*(t), 

and (z,(t), y,(t), xl(t), yl(t)) are also solutions of (3.2). 
(ii) Z,0 2, symmetry when f i  + 0, i.e. if (xl(t), yl(t), x,(t), y,(t)) is a solution, then 

- y , ( t ) )  are also solutions of (3.2). 
(iii) Parameter symmetry (Swift 1988), i.e. if p is replaced by -p  and (x2,y2,x1, 

yl) are replaced by (x,, y,, x,, y,), the system is unchanged. This makes i t  possible to 
restrict the analysis to  p > 0 without loss of generality. 

We also need to consider an intermediate form of (3.2) as follows: 

x1 = - (d +n3aE sin 26,) x1 + ( 1  + r - p +  n, a; cos 26, -n2 a;) yl-n, yl(x: +y:), 

g1 = (1  - u+p+n,a; cos 28, +n, a:) x1 - ( d - n ,  ui sin 26,) y1 + n, xl(x: +yi), 

(3.3a) 

(3.3b) 
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u, = ( - d + sin 28,) a, - 2n3 x1 y1 a, cos 28, + n3 a,(xf - y:) sin 28,, 

8, = - u-p+ cos 20, + n1 a: +n,(x: + yi) + r 3 ( x :  -y;) cos 20, + 2n,x,  y1 sin 20,. 

( 3 . 3 4  

( 3 . 3 d )  

System (3 .3 )  has 2, symmetry in the variables x1 and yl. 
We shall discuss our results in terms of bifurcation sets and bifurcation diagrams 

(Chow & Hale 1982). Bifurcation sets are graphs in the (u,P)-plane on which the 
system equations become degenerate, and bifurcation diagrams, which for simplicity 
we describe in terms of amplitudes a, and a, only (ignoring the O1 and 8, variables) 
as a function of the detuning of u for fixed values of p. We shall see that there are 
four intervals of the parameter p in each of which the bifurcation diagrams are 
qualitatively different . 

We show that the bifurcation sets are either straight lines or curves as in figure 1 .  
The points a t  which they intersect, in most cases, have not special significance, since 
the intersecting lines or curves represent bifurcations of different solutions. There 
are, however, four points, marked A, B, C and D, which represent more complicated 
phenomena of more than one codimension. Phenomena associated with these points 
will be discussed after the discussion of codimension-one local bifurcation. 

3.1.  The zero solution 

The stability of the zero solution (3 .2 )  is determined by the eigenvalues of the 
Jacobian matrix of (3 .2 )  evaluated a t  the origin, and they are 

A1,, = - d f ( 1 - ( u + / l ) 2 ) ) ,  A3,,, = -d i - ( l - (~-p)~) ; .  

For d + 0, we note that the system can be degenerate only through the eigenvalues 
going through zero, i.e. no Hopf bifurcations are possible. This can also be seen from 
the 2, Q 2, symmetry of the system. 

If we let p1 = ( 1 - d 2 ) f ,  then 

u,= p1+p, fl2 = -p1+p, u3 = p,-p, u 4  = -p1-p ( 3 . 4 )  

are the bifurcation sets a t  which one or the other eigenvalue has a simple zero. For 
these values of the parameters, one of the eigenvalues is a simple zero, leading 
to codimension-one bifurcation on a one-dimensional centre manifold ; all the 
bifurcations are pitchfork bifurcation because of the above-mentioned symmetry. 
The lines in (3 .4 )  intersect at A, B and C where we have codimension-two bifurcations 
on a two-dimensional centre manifold determined by the simple double-zero 
eigenvalue of (3 .2 )  a t  the origin. We shall show below that the bifurcations u,, IT,, 
u3 and u4 generate, through pitchfork bifurcations, periodic motions in one or the 
other of the single modes. 

3.2.  One-mode motion 

In  this case, we refer to system (3 .3)  and consider the solution x1 = y, = 0 and a, and 

nlai = (cr+/I)-cos28, and sin28, = d .  8, satisfying 

We have expressions for the bifurcation diagram 

a, = ((u-u3)/n1$ and a, = ( ( ~ - ~ 4 ) / n l ) f .  

They are shown as OM3 and OM4 on bifurcation diagrams in figures 2 4 ,  since they 
represent one-mode motions and they arise in bifurcations u3 and u4. Since for each 
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B 

( 

U 

-B 

\ ‘,Hopf 1 
\\ ‘ 

FIGURE 1. Bifurcation set for (1,0), (0 , l )  modes, infinite fluid depth, damping coefficient d = 0.1 
(p, = 0.99), except for the Hopf bifurcation where d -20. The types of bifurcation are: pitchfork 
(-), Hopf (---), saddle-node (-.-) and transcritical (--. .-). 

a2, e2 can take two values differing by n, we have in fact four one-mode periodic 
solutions. 

The stability of these solutions are determined by the eigenvalues of the Jacobian 
matrix of the system (3.3) computed at  the constant solution. They can be shown to 
be the roots of 

h 2 + 2 d h - ( f 4 n l a ~ P 1 )  = 0 (3.51 

and h2+2dh+D = 0, (3.6) 

where 
D = - l/n;((n3-n2 +n1) a+ (kp1-p) (-n3+n2 +nl)} 

((n, + n z - n l )  p1( -n3-n2 + nl )  + B ( n 3  +n2 (3.7) 

Again, since d =k 0, the instability of these solutions cannot occur through a Hopf 
bifurcation. The stability of the solution a, = 0, u2 $; 0 is indicated on the bifurcation 
diagrams figures 2 4 .  

Instability of the solutions as determined by (3.5) and (3.6) occurs through a zero 
eigenvalue when D = 0. It can be shown that bifurcations from OM3 occur a t  

g5 = P(p l -b ) ,  u6 = pl-qp,  (3.8) 
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OM2 

0- 

FIGURE 2. Bifurcation diagram for 0 < p < p2 (not to scale). The branches are: pure one-mode 
(-), rotational wave (-.-), standing wave (---). Thick lines denote stable motions and thin 
lines unstable motions. Hopf bifurcations are denoted by +. 

MS2 / 

0 2  

FIGURE 3. Bifurcation diagram for 8, < p < p, (not to scale). The branches are: pure one-mode 
(-), rotational wave (-.-), standing wave (---). Thick lines denote stable motions and thin 
lines unstable motions. Hopf bifurcations are denoted by t. If p2 < /3 < fi3, there is no Hopf 
bifurcation on branch RMI. 

where p and q are defined in (2.29). When these bifurcations coalesce, i.e. when 

7r* - 7rz -7r3 
P 1  

p = p  -- 
27r3 

2 -  (3.9) 

the corresponding u is u = p(p,-/?,). At ( p ( p 1 - P z ) , P 2 ) ,  we have a codimension-two 
point, point D, which we discuss later. We note that u5 > g6 if /3 > p2, u5 < g6 if 
/3 < p2 and g6 < g3 if p > pl. These features are shown on the bifurcation diagrams 
figures 2 4 .  

In  a similar manner a pitchfork bifurcation can be shown to occur from OM4. It 
is 

g 7  = -P1-QP. (3.10) 
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"1 

az 

FIGURE 4. Bifurcation diagram for /3 > (not to scale). The branches are: pure one-mode (--), 
rotational wave (--.-). Thick lines denote stable motions and thin lines unstable motions. Hopf 
bifurcations are denoted by t. 

Similar analysis can be done when a, = 0, and we have one-mode motions arising 
from crl and g2 as follows: 

a, = ( ( C T - ~ T , ) / ~ , ) ~ ,  a, = ((g-v2)/ml)f. 

They are shown as OM1 and OM2 on figures 2 4 .  A study of the stability of these 
solutions in turn generates pitchfork bifurcations when CT = g8 and CT = uQ with 

g 8  = P(P+PI), UQ = P(P-P1,. (3.11) 

Note that g5 exists only for p < PI, while u9 exists only for P > P,. All these 

We shall now discuss the mixed-mode motions that arise from C T ~ - - U ~ .  

bifurcations are indicated on figure 1.  

3.3. Mixed-mode motions 
For the study of mixed modes, it is necessary to study (2.27) in its complete 
generality. Even the study of its constant solutions, for all values of the parameters, 
presents considerable difficulty. Some of the mixed-mode solutions arise from the 
bifurcation of single-mode solutions. It can be shown that the constant solutions that 
bifurcate from g6 and u, have the surprising property that 8, = 8,. i.e. they are in- 
phase, while those that bifurcate from us, u8 and gQ do not have this property. 
Furthermore, this property is global. We shall see below that these two categories of 
constant solutions also represent physically different kinds of mixed-mode 
phenomena. 

Instead of extrapolating from the local behaviour a t  u5-cQ, we treat (2.27) directly 
and confirm the above observation about 8, and 8,. The constant solutions of (2.27) 
satisfy 

0 0  0 - m3 sin (28, - 28,) d - sin 20, 

- 1  0 0 1 ",sin (28,-28,) "1 

- 1  - 1  "r,+7r3c0s(28,-202) "1 - COS 28, 

"2 + "3 cos 0 (202 -281] [ i] = [ d -~0~281],  - sin 28, (3.12) 
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274 sin2 (28, - 28,) =I= 0. (3.13) 

This leads immediately to the two distinct cases. 

3.3.1. In-phase, mixed-mode motions 

We first note that if sin (28,-28,) = 0, the condition that d > 0 requires that 
cos (28, - 28,) = 1 ,  and 8, = 8,. System (2.27) then has constant solutions determined 
hv 

sin28, = sin28, = d ,  (3.14a) 

- ((T-P) + cos 28, +n, u; +n2 u;+n3u; = 0, (3.14b) 

- (u+P) + cos 28, + n1 u; + n, u; +n3 u: = 0. (3.144 

Solutions of (3.14) give two branches of the in-phase solution. It will be seen that 
these solutions, as distinct from more general solutions, represent standing waves of 
a distinctive character. Denoting these mixed-mode standing wave solutions by MS1 
and MS2, their amplitude and phase satisfy 

a, = ( a-u5 )i, 8, = isin-ld, j = 6 ,7 ,  
7 ~ 1  +n2 +n3 

It is not difficult to see that branch MS1 bifurcates from branch OM3 a t  u6, while 
branch MS2 bifurcates from OM4 a t  u,. They are shown on figure 2 and figure 3, while 
on figure 4, u6 and u, are out of the range of the diagrams. 

The stability of these in-phase solutions, as well as those of the more general 
mixed-mode solutions to be discussed later, leads to  the study of the roots of a 
quartic with coefficients that are functions of the appropriate constant solutions a; 
and ui, 8, and 02, as they depend on u, p and d. A general stability analysis proves 

to be very cumbersome and we, therefore, here and in the next case, discuss our 
results in the limit when d is small, which is the case that is expected to include the 
most interesting phenomena. 

We follow here Sethna & Bajaj (1978). It can be shown that the system vector field 
(3.2) can be written as the sum of the gradient of - $i(xi + 9: +xi + 9:) and a vector 
field derived from the Hamiltonian 

H = +( 1 + g-/?) Y: -+( 1 -a+/?) X; ++( 1 + a+P) TJ; -+( 1 - B - / ? )  X; 

-&1" + Y:I2 + (4 + Y 3 2 1  

(3.15) 

We note that the constant solutions of the system equations for d = 0 and d + 0, 
approach each other. Furthermore, from the structure of the equations, if h is an 
eigenvalue for the variational system for any constant solution when d = 0, then the 
eigenvalue for d += 0, but d+O, will be h-d. What is important is that when d = 0, 
the eigenvalues have special properties for linear constant-coefficient Hamiltonian 
systems: if h is an eigenvalue, then - A ,  A* and -A*, where * denotes complex 
conjugate, are also eigenvalues. 
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With the above remarks in mind, we pursue the following analysis when d = 0 and 
interpret the results for d small. The quartic determining the stability has a factor 
d in the coefficient of the cubic and linear term, and thus the eigenvalues of the 
reduced Hamiltonian system when d = 0 satisfy 

h4+a2h2+a0 = 0, (3.16) 

012 = --4[ k .,(a; +a;, + 2 4  a; n3(n1 -n2 -7r3)], (3.17) 

a, = 16a~u~(n1-n2-n3) (n1+n2-n3f2m3),  (3.18) 

When a. = 0 ,  we have a bifurcation point on branch MS1. We denote this 

where 

where the plus sign is for MS1 and minus sign is for MS2. 

bifurcation by CT,,,; it is, for d + 0, transcritical, and is a constant 

(3.19) 

and since u < cr6, we note that, rl0 occurs only for 0 < /3 < /I2. For the branch MS2, 
since u < v, < - 1, a, can be shown to be negative, and thus no bifurcation of any 
kind is possible on this branch. 

We also examine MS1 for Hopf bifurcations. It can be shown that the condition 
at-401, = 0 implies a double pair of pure imaginary roots for the Hamiltonian 
system, and in the limit as d tends to zero, a pair of pure imaginary roots with 
transversality property, lead to Hopf bifurcations. The value of P for this to occur 
in  

and (3.22) 

In figure 1,  the curve marked Hopf 1 shows the above Hopf bifurcation curve. It 
is computed in the limit d + O .  Numerical calculation of the fourth-order system of 
differential equations, using AUTO (a subroutine package for the bifurcation 
analysis of autonomous systems of ordinary differential equations by Eusebius 
Doedel) confirms the occurrence of these Hopf bifurcations. 

3.3.2. General mixed-mode solutions 

d ,  8, and O2 : 
Since sin (28,-28,) $; 0, (3.12) can be used to solve for CT, P, a: and ui in terms of 

( - nl - n2 + n3) (sin 20, - sin 20,) 
2n3 sin (28, - 20,) 

C T =  , ( 3 . 2 3 ~ )  

2d[n, - n1 +n, cos (28, - 28,)l + (nl - n2 - n3) (sin 20, + sin 28,) 
2n3 sin (20, - 20,) 

, (3.23b) P =  

17 FLM 199 



508 Z. C .  Feng and P. R .  Sethna 

d - sin 28, 
271, sin (28, - 28,) ’ 

sin 28, - d 
271, sin (28, - 28,) ‘ 

a: = 

a; = 

(3 .23~)  

(3.23 d ) 

We shall show that the above equations can be combined into a single quartic, the 

We first introduce 
roots of which give the solutions of this general case. 

2a71, d‘ = - 2dn3 , a =  --n,+n, 2P713 
’ y = 7r1-71,-?r3‘  

g’ = 
713 - 71, - 71’ + 7r3 ’ 711- 712 -713 

(3.24) 
that Then it can be shown 

cos (8, + 8,) 
C O S ( ~ , - ~ , ) ’  

g’ = 

If z = tan (O2-O1), then 

2sin (8,+8,) cos(8,-8,)-d(a+cos (28,-28,)) 
sin (28, - 28,) Y =  

(3.25a, b)  

1 -x2 22 
sin (28,-28,) = - 

1+x2’ 1+x2’  
cos (28, - 28,) = - 

1 
CoS~(82-8,) = - 

1+x2’ 
(3.26) 

Then substituting (3.26) into (3.25b) and using the expression for u’ in (3.25a), we 
get the following quartic in z: 

f ( ~ )  = (a- 1),  d‘,x4 + 4(a- 1 )  $ 7 ~ ~  + [4y2 + 2(a2 - 1) d‘* -41 x2 

+ 4(a + 1) d’yx + 4 d 2  + (a + 1)’ d’, - 4 = 0. (3.27) 

The real roots of (3.27) when substituted in (3.26) give cos(28,-28,) in terms of u’, 
d’ and y. When these expressions are in turn substituted into (3.23a, b), we get 
sin28, and sin28, and finally a; and a: are determined from (3 .23~)  and (3.23d). 

From (3.23c, d and a) ,  we have 

(3.28) 

and since 71, + 71, - n3 > 0, these branches exist only for u > 0. Furthermore, there is 
a maximum value of u’ = ukax so that all branches have u’ < adax, and thus the 
solution of the general case of mixed-mode solution occurs on a finite interval for 

We note that as x+O in (3.27), 4a’2+(a+l)2d‘2-4+0 too, and since u > 0 and 
u. 

using (3.23), we have 

(3.29) 

and thus the general mixed-mode solutions pass through ulo (here evaluated for 
d =?= 0) which is transcritical. 

The general mixed-mode solutions arise from one-mode solutions u6, u8 and ug and 
as discussed above, as x+O in (3.27) the solution approaches that for the in-phase 
solution. Thus the general mixed-mode solution passes through ul0. Up to this point 
the bifurcation diagram has evolved with the toplogy of a tree. This is not true of the 
genera1 mixed-mode solutions. The bifurcation diagram for these solutions, based on 
numerical calculations are sketched in figures 2 4 .  The figures show solutions that are 
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in agreement with the above observation regarding the finite interval of IT on which 
these solutions occur. We note the saddle-node behaviour of these solutions. The 
saddle node can be determined by solving for the parameter values a t  which (3.27) 
has double roots, i.e. when f (2) = 0 andf'(2) = 0. In figure 1 we show bifurcation sets 
for saddle-node bifurcations IT,,,  IT,^ and cr13. They are computed for d = 0.1. They 
are also shown on figures 2 4 .  In figure 2,  c12 and c13 are shown on opposite sides of 
IT,,. It is not impossible that they may both occur between  IT^ and IT,, for some other 
value of d.  It can be shown that if P = 0, i.e. for y = 0, u13 + cl0 and the bifurcation 
a t  ul0 which is, in general transcritical, becomes a pitchfork bifurcation. 

To study the bifurcations of these general mixed-mode solutions we again revert 
to the case when d+O. The quartic (3.27) then becomes, in the original variables, 

[( 2 n 3 p  )a_l]sP+( 2n31T y -1  = o .  
7r1 - T,  - 7r3 71, +?r2-7r3 

(3.30) 

The two solutions that are lost in this process can be recovered by studying (3.27) for 
d = 0 by again considering sin (26, - 28,) = 0 but this time with 8, = 0, 6, = in and 
6, = in, 13~ = 0, and which gives respectively 

+ P - ( + l )  . (3.31) 
P-(f1) , a;= IT - IT 

a; = 
7rl +7r2 -n3 7r1 -7r2 +n3 77, + 7rz -7r3 7T1 -7r2 +n3 

The two expressions in (3.31) are approximations, respectively, of the branches 
arising from u5 and IT* when d + 0. We denote these mixed-mode solutions as RM1 
and RM2 respectively since they represent, as will be shown later, rotating travelling 
waves and are mixed-mode solutions. 

The two solutions represented by the roots of (3.30) are 

+ , (3.32a, b )  
IT , a; = 

7r1+7r2-7r3 7r1-7r2-7r3 7r1 + 7r2 -7r3 7r1 -", -7r3 

IT - P a: = 

and 
(h;y 

tan(6,-8,) = f - . ( 3 . 3 2 ~ )  

They approximate as d --f 0 the two branches of the mixed-mode solution as it passes 
through c,,. 

We indicate on figure 2 the entire damped curve between vll and  IT,^ as GRM since 
it represents rotating waves of a more general nature and it occurs as a mixed mode. 
As d + 0, c13 -+ IT,,, CT,, and IT,, + co and the two branches from IT,, are as represented 
by (3.32). 

The stability of the above four solutions is again determined by the roots of 

h4+a2h2+ao = 0, (3.33) 

(3.34) 

(3.35) 

a, = +47r,(aZ, -at) + SaZ, at(7r, -7r2 +n3) n3, 

cLo = 1 6 ~ :  a;(n, +n2 -7r3) ( -771 f 7 r 2  +n3-(  rfi 2Pn3)), 

where the plus and minus signs correspond to RM1 and RM2 respectively, and in the 
case GRM we have 

17-2 
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2pn3 )2-1][( 2an3 )2-1]. (3.37) 
-711 + n2 + 7 ~ 3  -nl -n2 +n3 

4[(n3-n1)2-n; 

4 
cy: = -  

0 

The stability of these branches are as shown in figures 2 4 .  

the corresponding value of CT is as follows: 
Furthermore it can be shown that Hopf bifurcations are possible only on RM1 and 

where 
C = {[(ni-ni)2 - 4 1  ( -2pn3-nl-k n2 + n3) ( -2pn3 nz +ma)}'. (3.39) 

We observe that, when -22pn3+n1+n,+n3 < 0, C in (3.39) is imaginary. Thus there 
is no Hopf bifurcation if 

(3.40) 

In figure 1, the curve marked Hopf 2 shows the above Hopf bifurcation. Again it is 
computed in the limit d -+ 0. 

m i +  nz +n3 
P < P 3  = 2n3 

3.4. Codimension-two bifurcations 
We shall call a bifurcation a codimension-two bifurcation when the system behaviour 
near the denegerate bifurcation point can be understood in terms of two parameters, 
and they may or may not be associated with the linearized system equations. 

The codimension-two points are the points A, B, C and D in figurel, and they occur 
on the boundaries of the intervals 0 < p < p,, p2 < ,13 < PI and /3 > PI and the two 
parameters are u and p. In the case of A, B and C, the centre manifold is two- 
dimensional and arises from a simple double zero eigenvalue. The unfolding of these 
critical points is available in the literature. In  Guckenheimer & Holmes (1983) there 
is a complete discussion of the case of two pairs of pure imaginary eigenvalues 
without resonance. The results given there can be shown to be directly applicable to 
our cases, except, in our cases, they are valid for both positive and negative values 
of the variables. It is not difficult to show that in the case of points A and B, we have 
the case I b treated in Guckenheimer & Holmes with the time reversed in the case of 
A. (Specifically, we have these results with p,, p2, b,  c and d in Guckenheimer & 
Holmes as follows : 

d = 1, d-bc = 1- 

where A u  = grj3,, A p  = p.) In the case of C, we can show that we have the case 
VIIa. (Specifically, with pl, p2, b, c and d in Guckenheimer & Holmes as follows: 

pi = AU - A p ,  

where A u  = u, A p  = p-p,.) As is well known, such codimension-two analysis a t  
times leads to insights into global bifurcations. We expect some global bifurcations 
a t  these points when the entire vector field is Hamiltonian. To understand the global 
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bifurcations, however, requires the effect of higher-order terms which are beyond the 
scope of this work. 

In  the case of D, the situation is quite different. The centre manifold in this case is 
only one-dimensional and corresponds to a simple zero eigenvalue. The complicated 
behaviour a t  D arises partially from the fact that a t  D the zero eigenvalue does not 
have transversal behaviour. When u > u,, and /3 = p,, the eigenvalue approaches 
zero as c+i~,, and for u < ul, becomes positive again. A detailed analysis of this 
critical point is beyond the scope of this work. We expect that it would involve the 
determination of an approximation to the centre manifold up through terms of order 
eight. The codimension-two behaviour would arise from the degeneracies in the 
higher-order terms. Specifically, we expect the polynomial approximation to the flow 
rate on the centre manifold to be of ninth order. The coefficients of the polynomial 
are expected to be functions of u and /3 taking values near u = ul0 and /3 = B2. Some 
of these coefficients would be linear in u and p. When they are zero, they would 
generate bifurcations us, c6 and u,, represented by straight lines ; while others would 
be nonlinear in u and /3 and, when they are zero, would generate u12 and u13. The 
general behaviour near D can be summarized, on the basis of the separate 
codimension-one analysis, as follows : The critical eigenvalue remains negative in the 
sector between c5 and g6 for both /3 > /3, and /3 < p, and is otherwise positive. The 
number of critical points are one, three, five, nine, seven and seven, respectively, as 
one goes through open sets around D, starting with the open set in the sector between 
u6 and u5 for /3 > p, and going counterclockwise through the seven sectors around D. 
In  the above discussion, we count fixed points that have the same amplitudes a, and 
a2 but phases 8, and 8, different by n separately. These fixed points do not appear 
separately on figures 2 4 .  

4. Physical interpretation 

interpretations. The fluid surface 7 can be expressed as 
The several kinds of motion discussed above have, in many cases, simple physical 

7 = a, sin ( t +  8,) cos (mnz) cos (nny) +u,sin ( t  + 8,) cos (nnz) cos (mny). (4.1) 

Nodal lines or curves, for standing waves, occur when 7 = 0 for all t .  The simplest 
ones are straight lines or points and, when they are points, their coordinates are 

2i- 1 2j- 1 
xo = ___ 2k Y o ' 7 j - p  i , j = 1 , 2  ,..., k ;  k = m , n .  (4.2) 

The number of such points is less than or equal to m2+n2 for given m and n. If we 
introduce local polar coordinates a t  each point (x,,, yo), i.e. let 

2i- 1 2j- 1 
x=- +R, cos $, y = -- + R, sin q5, 

2m 2m (4.3) 

then substituting (4.3) in (4.1) and letting 7 = 0, we have expressions for the nodal 
curves as they move as a function of time, i.e. we have travelling waves. For R, not 
very small, these curves are expressible in terms of infinite series with Bessel 
functions as coefficients. For R, very small, however, 7 can be approximated locally 

2m 1 ' nn(2j- 1) nn(2i- 1) + ( - 1 ) j  sin ( t  + +) sin $ cos ( - 1)" sin t cos #I cos 
2m 

(4.4) 
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where a = al /a2  and $ = 8,-8,, and when 7 = 0, we have 
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sin t . Csin$cos2$ 
sin(t+$)’ ’= sinZ(t+$) 9 

t an#  = C 

where 

nx(2j- 1) 
2m 

nn(2i- 1 )  
2m 

cos 
c = (-  l)i+j+l a 

cos 

We note that, in addition to straight lines as standing waves and their degenerate 
forms as points given by (4.2), additional degenerate standing waves occur when $ 
is constant, and they occur when $ = 0, i.e. when 8, = 8,. These are the waves 
indicated by MS1 and MS2 in the above analysis. 

Furthermore, when $ = in and C = 1, we note that 4 is constant; and thus, 
locally, these are travelling waves rotating about the nodal points with constant 
angular velocity. Such waves occur in the degenerate case RM1 and RM2 discussed 
above. In  the more general mixed-mode case GRM, when $ is arbitrary, we note that 
4 is of one sign and thus there are rotating waves, but the rotation rate has, in 
general, a strong second harmonic. 

The above discussion is limited to the cases where a,, a2, 8, and 8, are constants, 
i.e. for constant solutions of (2.27). If these quantities are going through Hopf 
bifurcations, period-doubling sequences or if they get chaotic, such behaviour will 
manifest itself as slow-time modifications of the above wave phenomena. 

5. Experiments 
Experiments were done to check the major conclusions of the theory, regarding the 

types of periodic and quasi-periodic motions, their amplitudes and the detuning 
frequency a t  which they occur. Although we have also observed chaotic behaviour 
for parameter values a t  which they are to be expected, the equipment available is 
inadequate for a detailed study of these phenomena. We refer to the work by 
Simonelli & Gollub (1989) mentioned in the introduction for the study of these 
phenomena and also for a much more complete examination of some of the 
phenomena that we describe here. 

The container and some of the equipment are similar to that described by Virnig, 
Berman & Sethna (1987). The container is of Plexiglas with a horizontal cross-section 
that is 177.80 mm (7 in.) in one dimension and the other dimension is adjustable to 
any dimension to produce an almost square container with any desired aspect ratio. 
Tap water, with Kodak Photo-Flo 200 solution added a t  a concentration of 1/1000, 
is used as the fluid. This additive is used to  reduce surface tension. 

To measure the wave amplitude two simple resistive transducers consisting of 
pairs of stainless steel rods 3.18 mm (i in.) apart and inserted vertically at the linear 
nodal points are used. The resistance of the fluid between the rods, as it changes with 
the fluid height, is measured by a Wheatstone bridge arrangement along with 
Tektronix oscilloscopes using approximately 25 kHz signal. Although there is 
interference between the transducers, since the Tektronix signals differ by 220 Hz 
and since the signals measured are a t  less than 5 Hz, a low-pass filter effectively 
eliminates the interference. The signal from the Tektronix oscilloscopes is sent to a 
Norland Prowler dual channel digital oscilloscope. I ts  built-in function can read the 
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peak-to-peak value of the signal. This reading is sent to an H P  86/87 microcomputer 
and recorded on a disk. Because of the time needed for data transmission, The 
Prowler unit can take only one reading in about a second, while the wave motion 
itself has a frequency of about 3 Hz. This causes no difficulty, however, since the 
motion, even when amplitude modulated, is on a very slow timescale. By 
interpolation of the data, we obtain a smooth function of amplitudes as a function 
of time. The above measurement system is calibrated with micrometers, as in Virnig 
et al. (1987), before each experiment. 

An MTS machine (model 810) is used to provide the vertical sinusoidal excitation. 
I ts  built-in feedback control allows us to control the amplitude with a fluctuation of 
1 YO. The forcing frequency is controlled by an HP3310B function generator, which 
provides the signal to  the MTS machine. An HP5315A universal counter is used to 
display the frequency. After approximately half an hour for warm-up, the frequency 
drift is less than 0.1 YO for any ten-minute interval and 0.5% for an eight-hour 
interval. The harmonic content of the MTS machine is analysed by taking its built- 
in displacement transducer signal into an HP3582A spectrum analyser. The relative 
magnitude of high harmonics decreases as the forcing amplitude is increased. For the 
smallest amplitude we used (1.00 mm peak-to-peak), the second, third and fourth 
harmonics are 4.84 YO, 2.90 YO, 0.66 YO of that of the fundamental frequency. This can 
be a source of error and precautions were taken to make sure that the harmonics do 
not couple with natural frequencies of other modes. 

A typical experiment proceeds as follows: First, we select the mode number. 
Although experiments were done with several mode numbers, ( 1 , O )  and (0, l )  are the 
most suitable, for easy visualization and for frequency separation, and all the data 
presented are for these modes. We find that the forcing amplitude has to be less than 
2.00 mm, so that the wave amplitudes are not too large (less than 15 YO of the size of 
the container). On the other hand, the forcing amplitude has to be above a certain 
value to be able to see any waves a t  all. Once the forcing amplitude is decided, we 
choose the aspect ratio by moving the movable side. 

With a given forcing amplitude, we fine tune the frequency to get different wave 
phenomena. With a fixed forcing amplitude, although and p both depend on the 
frequency, since the change in /3 is small as a function of the frequency, it is possible 
to obtain experimentally bifurcation diagrams that are qualitatively the same as 
those in figures 2 4 .  The theory curves given in figures 5 and 6 are all for a damping 
coefficient four times that obtained from the theory of Miles (1967) since this value 
gives a better fit with the experiments. A comparison with theory results based on 
damping using Miles formula, however, were still quite acceptable and showed no 
qualitative features different from those presented here. 

To check the theoretical results given on figure 3 for (pz < p < p,) a container with 
a cross-section of 177.8 mm x 180.34 mm (7 in. x 7.1 in.) and a forcing amplitude of 
1.00 mm is used. The results are given on figure 5. Starting with a relatively high 
excitation frequency, as the frequency is decreased we first see one-mode motions 
corresponding to OM1 and the agreement with theory is good. We note that the wave 
amplitude at the other transducer is small but not zero. This also is in agreement 
with the theory. As the frequency is reduced further, the wave motion is a travelling 
mixed-mode wave corresponding to the theoretical results indicated as RM1. The 
agreement here with theory is not very good since the theory curve is very steep. 
With further reduction in frequency, we have single-mode motions OM3 for a2 and, 
as before, we have some small signals from the other transducer. Further reduction 
in frequency gives mixed-mode standing waves MSl. Here the agreement between 
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FIGURE 5. Experimental verification of bifurcation diagram on figure 3 for /3, < /3 < P3, with the 
same notation as that in figure 3 for theory curves. The notation for experimental data is: 0, 
standing wave; 0,  rotational wave; A, pure one-mode. 

theory and experiment is quite good. A further decrease in frequency leads to a 
region of Hopf bifurcation of MS1 and a potential for chaotic behaviour. Chaotic 
behaviour of the amplitudes a, and a2 as a function of time was observed a t  the 
appropriate frequency values. 

On figure 6, we give experimental results corresponding to the bifurcation diagram 
on figure 3 with ,8, < p < PI. The data are taken with a container cross-section 
177.80 mm x 190.50 mm (7 in. x 7.5 in.) and excitation amplitudes 1.25 mm. Starting 
with a relatively high frequency, as the frequency is reduced we have one-mode 
motions corresponding to OM1 and, as before, a reading from the other transducer. 
As the frequency is further reduced, the theory predicts steady travelling waves RM 1 
as well as two Hopf bifurcations, as shown in figure 3. What is actually observed is 
some remarkable behaviour with rotating travelling waves with amplitude 
modulation. We first note that the extremely slow phenomena we describe below 
occur when the vertical excitation period is about 0.25 s. The wave motion observed 
is a rotating travelling wave in one direction with a varying amplitude that lasts 
between 50 and 150 s, depending on the excitation amplitude, until it becomes a pure 
one-mode motion corresponding to the higher of the two frequencies (OM1). After 
that, the motion reverses in direction as a rotating travelling wave, which again lasts 
for about 50 to 150 s. What is plotted on figure 6 is the ' average ' amplitude observed 
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0.20 r 

-3.96 4.00 4.04 4.08 4.12 4.16 4.20 4.24 
Forcing frequency (Hz) 

0.16 r 

3.96 4.00 4.04 4.08 4.12 4.16 4.20 4.24 
Forcing frequency (Hz) 

FIGURE 6. Experimental verification of bifurcation diagram on figure 3 foe p3 < p < PI, with the 
same notation as that in figure 3 for theory curves. The notation for experimental data is: 0, 
rotational wave; A, pure one-mode. 

during this phenomenon a t  the indicated excitation frequency. The whole 
phenomenon is very striking and occurs on a timescale that one would associate with 
Hopf bifurcations. Th phenomenon was definitely not periodic and appeared chaotic, 
but, because of the extremely long time intervals, a claim of chaotic behaviour is not 
made here. With further reduction in frequency, pure one-mode motions cor- 
responding to OM3 are observed. 

Additional experimental data, not presented here, are obtained that correspond to 
the bifurcation diagram on figure 4. The theory curves here are similar to  those on 
figure 6, except that here is only one Hopf bifurcation on RM1 and there is a 
frequency interval when there are no wave motions. The experimental results 
obtained are very similar to those described for figure 6, including the slow rotation 
phenomena. 

6. Comparison with the results of Simonelli & Gollub 
We first note that equations (2.3) of Simonelli & Gollub (1989, hereinafter referred 

to  as S & G), derived from symmetry considerations, are equivalent to  our (3.2) 
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derived from basic principles of fluid mechanics and, in our case, i t  is possible to give 
explicit expressions (2.14) and (2.15) for the parameters. We shall attempt here a 
comparison of our results with those of S & G. We shall limit the discussion to  those 
aspects that pertain to local bifurcations since we in our work touch only slightly on 
non-local phenomena. 

The experimental work of S & G is presented in terms of the physical excitation 
frequency and amplitude while our results are presented in terms of the dimensionless 
parameters u and p. The parameter u is a function of the detuning of the external 
excitation, excitation amplitude and the aspect ratio, and when the latter two are 
constants it is proportional to the detuning. The parameter p is a function of the 
deviation of the aspect ratio from unity and the excitation amplitude, and for a fixed 
value of the latter it is proportional to  the former. Because of this difference of 
presentation direct comparison is difficult. 

A valid and detailed comparison is possible, however, in the case of the results of 
S & G for a square container and our results for /3 small. This is because p = 0 for the 
case of a square container when the excitation amplitude is not zero. 

The terminology in S & G and that used here is of course different. I n  S & G ‘flat 
surface’, ‘pure state’ and ‘mixed state’ correspond to our ‘zero solution ’, ‘one-mode 
solution ’ (OM) and ‘standing wave ’ (MS) respectively. Taking this difference in 
terminology into account, we can make a comparison of the experimental results of S 
& G as given on their figure 4 with our results given on the bifurcation diagram on 
figure 2 for p small. Our diagram is for a fixed excitation amplitude chosen with a 
view to give a complete picture of the phenomena. Consider figure 4 of S & G at  a 
fixed excitation amplitude between 150 and 160pm. Then starting with an 
excitation frequency of 14.3 and decreasing it gradually we pass through region D of 
‘pure states’ which corresponds to stable parts of our OM1 and OM3 on figure 2. 
When the frequency is further reduced to reach region C of ‘mixed or pure states ’ 
they correspond in our figure 2 to the coexistence of standing waves MS1 and OM3 
when u is small and positive. When the frequency is further reduced to reach region 
B, the ‘mixed state ’ of S & G, we have only MS1 with u < 0, as the stable state. With 
further reduction in frequency we have region A with coexistence of ‘ mixed state ’, 
our MS1 and the ‘flay state’, our zero solution. 

A direct comparison of experimental results of S & G with our results for non- 
square containers is not possible. It appears, however, that the experimental results 
on figure 9 of S & G compare fairly well with our results for p > 1 given on figure 4. 
Specifically we do not have MS standing waves and S & G do not find coexistence of 
pure modes, and both works show clear separation of pure states, i.e. our OM1 from 
OM3. 

The main differences between their results and ours lies in the fact that we predict 
and observe travelling waves and they do not have any evidence of such waves. 

The discussion in S & G of figures 5, 6, 7 and 10 is in agreement with our 
results. 

7. Conclusions 
We have presented a study of wave motions in a nearly square container under 

vertical excitations based on the study of a derived set of a fourth-order system of 
ordinary differential equations, the normal form equations. We give a complete 
analysis of bifurcation phenomena for almost all values of the system parameters 
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without having to resort to numerical calculations. We also give experimental 
verification, although limited in scope but adequate to verify most of the phenomena 
predicted by the theory. Furthermore, we present experimental evidence of what 
appears to be interesting chaotic behaviour a t  values of system parameters &t which 
the theory anticipates such behaviour. A forthcoming study of the same problem for 
global bifurcations will bring a more complete understanding of this problem. 

This work was supported by Grant NSFO631-5392. The authors wish to 
acknowledge help from Dr X. M. Gu with some preliminary calculations of the 
normal form equations and from Mr John Virnig and Mr Marek Behr with some of 
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